The Influence of AI on Improving Translation Skills: A Survey Study

Authors

  • Asst. Lect. Lamya Rasheed Al-Ali Department of Translation -College of Arts - University of Basrah Basrah - Iraq

DOI:

https://doi.org/10.31185/wjfh.Vol21.Iss1/Pt1.841

Keywords:

Artificial Intelligence, AI-powered translation software, DeepL, Gemini, ChatGPT, linguistic proficiency.

Abstract

In the development of the digital world, translation is considered an integral part of communication among nations and cultures. This study aims to shed light on the influence of Artificial Intelligence (AI) on improving and enhancing the skills of the 4th-year students in the Department of Translation. It seeks to analyze how AI-powered translation software, such as Google Translate, DeepL, Microsoft Translator, Gemini, ChatGPT, etc., enhances linguistic proficiency and ability to translate texts accurately and effectively. The descriptive analytical approach is adopted by using a questionnaire distributed to a sample of fourth-year students in the Department of Translation/University of Basrah. Likert scale is employed to evaluate students' responses regarding the efficacy of modern technologies in improving their skills. The study focuses on several aspects, including methods for searching vocabulary, translation accuracy, and the challenges students face in using AI applications. The results indicate that there is a tangible improvement in some aspects of translation when using AI applications. However, there are still challenges related to accuracy and cultural context. In addition, integrating traditional education with modern technologies plays a major role in enhancing students’ capabilities and developing their translation skills.

Downloads

Download data is not yet available.

References

References

• Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., & Mané, D. (2016). Concrete problems in AI safety. arXiv preprint arXiv:1606.06565.

• Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural Machine Translation by Jointly Learning to Align and Translate. ICLR Conference, 1-15. arXiv preprint arXiv:1409.0473.

• Bassnett, S. (2014). Translation studies. Routledge.

• Briakou, E., Luo, J., Cherry, C., & Freitag, M. (2024). Translating step-by-step: Decomposing the translation process for improved translation quality of long-form texts, pp:1-17. arXiv preprint arXiv:2409.06790.

• Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165.

• Bunga, E. L. M., & Katemba, C. V. (2024). Comparing translation quality: google translate vs deepl for foreign language to English. Edusaintek: Jurnal Pendidikan, Sains dan Teknologi, 11(3), pp: 1147-1171.

• Chan, V., & Tang, W. K. W. (2024). GPT for Translation: A Systematic Literature Review, SN Computer Science, 5(8), pp: 1-9.

• Creswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (4th ed.). SAGE Publications.

• Escartín, C. P., & Arcedillo, M. (2015, July). A fuzzier approach to machine translation evaluation: A pilot study on post-editing productivity and automated metrics in commercial settings. In Proceedings of the Fourth Workshop on Hybrid Approaches to Translation (HyTra), pp: 40-45.

• Ferrag, F. & Bentounsi I. (2024). The Use of Artificial Intelligence in Academic Translation Tasks Case Study of Chat GPT, Claude and Gemini. Ziglobitha,( 2), pp:173-192

• Fujii, M., & Inaba, M. (2020, January). Survey of Specification Explanations about the Risk of Data Handling in Cloud Translation Services. In Proceedings of the 2020 the 3rd International Conference on Computers in Management and Business, pp: 3-8.

• Gao, Y., Wang, R., & Hou, F. (2023). Unleashing the power of ChatGPT for translation: An empirical study, 1-10. arXiv preprint arXiv:2304.02182.

• Gaspari, F., Almaghout, H., & Doherty, S. (2015). A survey of machine translation competences: Insights for translation technology educators and practitioners. Perspectives: Studies in Translatology, 23(3), pp: 333-358.

• Golovatska, L. and Tereshchuk, G. (2024). The Use of Digital Technologies to Prepare Future Translators for the Modern Requirements of the Linguistic Services Market, Journal of educational technology development and exchange, 17(1), pp:175-187. Doi: 10.18785/jetde.1701.10

• Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

• Hutchinson, J. (2021). Microsoft Translator: Features, Benefits, and Use Cases. Microsoft Press.

• Shen, T. (2018). Crowdsourcing and Online Collaborative Translations: Expanding the Limits of Translation Studies. Australian Journal of Linguistics, 39(2), pp: 284–286. https://doi.org/10.1080/07268602.2018.1439251

• Koehn, P. (2009). Statistical Machine Translation. Cambridge University Press.

• Koehn, P. (2020). Neural machine translation. Cambridge University Press.

• Koponen, M. (2016). Is machine translation post-editing worth the effort? A survey of research into post-editing and effort. The Journal of Specialised Translation, 25, pp: 131-148.

• Lee, T. (2024). Artificial intelligence and posthumanist translation: ChatGPT versus the translator. Applied Linguistics Review, 15(6), pp: 2351-2372. https://doi.org/10.1515/applirev-2023-0122

• Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 22(140), pp: 5-55.

• Linlin, L. (2024). Artificial Intelligence Translator DeepL Translation Quality Control. Procedia Computer Science, 247, pp: 710-717.

• Mikolov, T., Chen, K., Corrado, G.S., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. International Conference on Learning Representations., pp: 1-12. arXiv preprint arXiv:1301.3781.

• Moorkens, J., Castilho, S., Gaspari, F., & Doherty, S. (2018). Translation quality assessment. Machine translation: Technologies and applications ser. Cham: Springer International Publishing.

• O’Hagan, M., & Mangiron, C. (2013). Game Localization: Translating for the Global Digital Entertainment Industry. John Benjamins Publishing Company.

• Oktadela, R., Elida, Y., & Ismail, S. (2023). Improving English Vocabulary through Artificial Intelligence (AI) Chatbot Application. Journal of English Language and Education, 8(2), pp: 63-67.

• Othman, A., Chemnad, K., Tlili, A., Da, T., Wang, H., & Huang, R. (2024). Comparative analysis of GPT-4, Gemini, and Ernie as gloss sign language translators in special education. Discover Global Society, 2(1), pp: 1-14.

• Peng, K., Ding, L., Zhong, Q., Shen, L., Liu, X., Zhang, M., ... & Tao, D. (2023). Towards making the most of ChatGPT for machine translation. EMNLP, 5622–5633, arXiv preprint arXiv:2303.13780.

• Russell, S., & Norvig, P. (2016). Artificial intelligence: A modern approach. Pearson.

• Nadia odah Sultan, L. (2024). Polyglossia in the Translation of Young Adult Literature: A Descriptive Study of Madeleine L’Engle’s A Wrinkle in Time. مجلة واسط للعلوم الانسانية, 20(4/Pt1), 489-469. https://doi.org/10.31185/wjfh.Vol20.Iss4.725

• Sultan, N. & Al-Ali, L. (2024). Shifting from Formal to Dynamic Equivalence in Raheem's Murder of the Bookseller: A Descriptive Qualitative Study. Adab Al-Basrah Journal, 108(1), pp: 61-77.

• Torregrosa, D., Pasricha, N., Masoud, M., Chakravarthi, B. R., Alonso, J., Casas, N., & Arcan, M. (2020). Aspects of terminological and named entity knowledge within rule-based machine translation models for under-resourced neural machine translation scenarios. arXiv preprint arXiv:2009.13398.

• Trujillo, A. (1999). Translation Engines: Techniques for machine translation. Springer.

• Tundik, M. A., Attila, H. I. L. T., Gergo, B. O. T. A., Lorand, N. A. G. Y., & Luukkanen, K. (2018). Access-independent cloud-based real-time translation service for voice calls in mobile networks. In 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), IEEE, pp: 1-6.

• Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention Is All You Need. Advances in Neural Information Processing Systems, 30, pp: 1-15.

• Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., ... & Dean, J. (2016). Google's neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144.

• Yunjiu, L., Wei, W., & Zheng, Y. (2022). Artificial intelligence-generated and human expert-designed vocabulary tests: A comparative study. Sage Open, (2), 1-12. 10.1177/21582440221082130.

Downloads

Published

2025-02-01

Issue

Section

European languages and literature

How to Cite

Lamya Rasheed Al-Ali, A. L. (2025). The Influence of AI on Improving Translation Skills: A Survey Study. مجلة واسط للعلوم الانسانية, 21(1/Pt1), 950-919. https://doi.org/10.31185/wjfh.Vol21.Iss1/Pt1.841

Similar Articles

1-10 of 80

You may also start an advanced similarity search for this article.